IFPS Era Verification: ISST Requirements, Endorsements, and Proposals

Brief to OS&T March 5, 2004

Brief History of NWS Forecast Verification

- Formation of National Verification Committee (1982)
 - "Has fallen into disuse past decade" From National Verification Plan (12/31/03)
- MDL system
 - AWIPS Era Verification
 - Web
- Lack of adequate, real-time forecast feedback in WFOs
 - Field developed software to address need
 - SOOVER, Aviation Verify

ISST Verification Efforts to Date

- Endorse verification as critical part of IFPS
 - Within original list of 8 proposals in IFPS SOO/DOH
 Whitepaper
- 2-pager sent to SOOs, SSDs, and MSDs (4 August 2003)
 - Re-emphasizing verification priority and listing concerns with ORD verification
- Provided IWT input on NDFD Verification Plan
 - Asked to prioritize 21 tasks in 31 Dec '03 version of plan

Base Verification System Requirements

- Verification should be <u>key</u> component of IFPS
 - Training is critical to program success
- Must have gridded and point verification
 - Must match minimum, agreed-upon grid spacing for local digital forecast database
 - Point system must include all available observations
 - Object verification also desirable
 - Improvements over persistence and climatology
 - Requires gridded climatology
- Flexible, real-time display in AWIPS/D2D and GFE
 - Could stratify by region, zone, forecast period, office, etc.
 - System consistency across all levels of agency
- Provide customers and partners with ability to calculate various measures of forecast accuracy and quality

ISST Review of NWS IWT Verification Plan

- Provides foundation for building viable IFPS verification system
- Divided 21 tasks into five categories:
 - Enhancing the existing MDL system
 - Develop a new system with a relational database with GIS capabilities
 - Local office real-time access and display
 - Training and education
 - Analysis of Record

Key ISST Endorsements

- Establishing verification program leadership
 - Necessary for building and maintaining system
- Need for gridded and point verification
 - Gridded verification needs immediate Analysis of Record development proposed in plan!
 - EMC involvement
 - Prototype through use of existing systems (e.g., ADAS)
 - Establishing gridded climatologies
 - Verifying model forecasts
 - Should be down to the "Smart Init" level for each element
 - Point verification should use all available observations
 - Includes automated quality control procedures
 - Will need system that can be tailored by user
- Verification training and education is critical

Notable Plan Deficiencies

- Immediate need for real-time, forecaster feedback in AWIPS/D2D and especially the GFE
 - Plan proposes short and long term statistics through web access and display only
- RDBMS solution is web-based
 - Any RDBMS must run in parallel to GFE system
- No specific mention of OCONUS verification
 - Does not address lack of existing high-resolution OCONUS analysis system

Getting It Off the Ground

- Propose enhancement of current MDL system...
 - Easily accessible forecaster feedback in real-time
 - Ingest and display of verification data within AWIPS/D2D and GFE
 - Should include enhancement of existing DFC functionality
 - Expand upon current set of verifying observations
 - Must agree on a minimum, matching NDFD-GFE grid spacing
 - Allows transportability of NDFD gridded verification to GFEs
 - Will require additional hardware resources

Getting It Off the Ground (cont.)

- ...in parallel to promoting and supporting R&D on more robust verification system
 - Including use of relational database and GIS methods
 - Build from lessons learned from, and methods of, FSL's Real-Time Verification System (RTVS)
 - Should complement, not replace, AWIPS/D2D and GFE system

Other Efforts needed to Get it Off The Ground

- Need to establish accuracy and success criteria
 - Impact on experimental to official transitions
- Need to determine method to assess quality, strength, and weakness of gridded forecast products and supporting model guidance
 - Measures- and distribution-oriented
 - Also explore adding other verification measures to determine forecast quality (e.g., spatial data mining or object-oriented approach)
 - Must begin providing forecasters with error grids

Proposed Immediate Tasks

- Gather and document operational requirements to guide system development
 - Should kickoff with ISST verification paper
- Plow ahead with formation and work of NDFD Verification Action Team
 - Guided by operational requirements document
 - Should determine initial resource allocation to quickly get system off the ground
 - Will oversee system development and implementation
- Establish baseline standards/criteria for forecast accuracy

Proposed Immediate Tasks (cont.)

- Formulate Prototype Verification Project
 - WFO subset used for system testing and feedback
 - Enhance current MDL system to display and interrogate, in near real-time, verification data and grids within AWIPS/D2D and GFE
 - Measures-oriented with distribution-oriented development
 - Blend into DFC framework
 - Prototype gridded verification with existing highresolution analysis systems (e.g., ADAS)
 - Explore development of a national ADAS
 - Investigate use of FSL's Meteorological Assimilation Data Ingest System (MADIS)
 - Add more observations to point verification system

Critical Development Efforts

- Hold USWRP-sponsored Analysis of Record Workshop
 - Must begin moving on Analysis of Record work!
 - Initial contacts have been made
 - Must address OCONUS requirement for highresolution analysis
- Promote internal and external R&D on robust verification system and methods
 - E.g., CSTAR, COMET RFPs

System Development Guidelines

- Advocate collaboration and coordination of current development and program efforts
 - Limited resources require elimination of redundant efforts
- Leverage resources among universities and research and development labs to maximize productivity and implementation time line
 - Immediate need for real-time verification system in field requires careful collaboration among groups
 - Program leadership critical to success